Рыхлые пески в основании фундамента - TagilMaster.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Рыхлые пески в основании фундамента

Эффективное использование грунтов в основаниях

«Построено на песке» — до сих пор это крылатое выражение применяется в народе для характеристики чего-то недолговечного и ненадежного. Да, то, что построено на движущихся и незакрепленных барханных песках, действительно ненадежно. Но эта частная характеристика, распространенная на все пески, как истина вне своих границ становится абсурдом. И еще до недавнего времени к пескам мелким и пылеватым водонасыщенным относились очень осторожно, вводя коэффициент условий их работы в основании m = 0,6—0,8. В новых нормах этот коэффициент исключен.

Изучение физико-механических свойств песков в основаниях сооружений представляет большое практическое значение для строительства. И пески, как никакие другие грунты, интенсивно изучаются, начиная с первых опытов Волкова и Курдюмова в прошлом столетии.

Распространение. На территории Белоруссии пески имеют широкое распространение, занимая 40—50% территории. Они залегают в различных геоморфологических формах ледникового комплекса, в основном как водно-ледниковые, озерно-ледниковые, эоловые и аллювиальные отложения разных эпох оледенений и межледниковий.

Исследованиями установлены региональные особенности песков территории Белоруссии: большое разнообразие генетических типов и форм залегания; связь их происхождения с оледенениями и межледниковьями и неоднократное их переотложение; угловатость и незначительная окатанность зерен, зональность гранулометрического состава песков. Свойства песков изучались в направлении их использования как строительных материалов в промышленности.

Физико-механические свойства песков как песчаных оснований давно изучались геологами проектных институтов для конкретных площадок застройки. Специалисты проводят исследования и научные обобщения песков как оснований для зданий и сооружений.

Физико-механические свойства. И. А. Голубев провел лабораторные и полевые испытания песков штампами, а также наблюдения за осадками зданий на песчаных основаниях. Физические характеристики песков даны в табл. 12.

Таблица 12. Физические характеристики песков.

Плотность сложения (см. табл. 6)

Средние физические характеристики

удельный вес Vs

объемный вес V, кгс/см 2

коэффициент пористости , е

По изученным образцам доля песков средней крупности и мелких составляет около 70%. Пески по плотности относятся преимущественно к рыхлым и средней плотности — около 70% всех образцов.

Для определения нормативных углов внутреннего трения рекомендована эмпирическая формула:

где е — коэффициент пористости, m — параметр, для песков средней крупности m = 0,64, мелких — m = 0,68.

Углы внутреннего трения имеют величины: для крупных песков 384-43°; средней крупности 354-40°; мелких 284-38°, в зависимости от пористости.

Модуль деформации мелких песков также можно определить исходя из коэффициента пористости е по формуле:

По полевым испытаниям модули деформации имеют величины 2104-600 кгс/см 2 .

Условные расчетные давления на песчаные основания рекомендуются: для песков средней крупности независимо от влажности, средней плотности — 3,5÷4,0кгс/см 2 , рыхлых — 2,0÷2,5; для мелких маловлажных плотных — 4, средней плотности — 3÷3,5, рыхлых — 2÷2,5 кгс/см 2 .

Пески плотные и средней плотности обладают малой сжимаемостью под нагрузкой. По полевым опытам, при давлении до 5 кгс/см 2 осадка штампа не превышает 8 см.

Опытное строительство. Из многолетнего опыта строительства в Белоруссии известно, что здания и сооружения, построенные на песчаных основаниях, обладают достаточной долговечностью, прочностью и устойчивостью.

Лишь в редких случаях эксплуатационные качества сооружений снижаются вследствие развития суффозионных и плывунных явлений в грунтах оснований.

Научные исследования песчаных оснований направлены на выявление и использование резервов их несущей способности и деформативности.

Изложены результаты экспериментального строительства 26 зданий на песчаных основаниях с давлениями, увеличенными до 50% по сравнению с принятыми нормами проектирования.

Наблюдения показали, что абсолютные осадки зданий не превышают 2 см, а относительные — в несколько раз меньше предельных по нормам. Этот опыт показывает, что прочностные и деформативные свойства песчаных оснований полностью еще не используются.

Из опыта строительства на пылеватых песках. В 1966—1972 гг. под руководством автора проведены длительные наблюдения за осадками фундаментов зданий и сооружений Гомельского суперфосфатного завода и исследования физико-механических свойств грунтов оснований. Осадки замерялись прецизионным нивелиром по методике, изложенной в «Руководстве по наблюдениям за осадками».

Площадка района застройки в геоморфологическом отношении представляет плоскую равнину, сформированную аккумуляцией водно-ледниковых и аллювиальных отложений (р. Сож) с последующим развитием эоловых процессов.

В сжимаемую толщу оснований большинства фундаментов входят пески пылеватые и супеси водно-ледниковые. Основная доля осадки оснований приходится на пески пылеватые, аллювиально-эоловые, преимущественно маловлажные и влажные.

Влияние грунтовых вод на свойства пылеватых песков не прослеживается вследствие сравнительно глубокого положения уровня вод (на глубинах 4,5—6 м от отметки планировки).

Объекты наблюдений за осадками включали производственные здания и сооружения завода: 1) экстракции и упарки фосфорной кислоты пятиэтажное; 2) отделений дообработки и операционное одноэтажное; 3) прирельсовый складе размерами в плане 198×18м одноэтажный; 4) силосный склад апатитового концентрата высотой 39,1м и с размерами в плане 28,5×57м; 5) здание центральной воздушно-компрессорной станции высотой 18,2м.

Для несущих колонн каркасных зданий применены монолитные железобетонные фундаменты стаканного типа. Силосный склад имеет фундамент в виде двух сплошных железобетонных плит с размерами 28,5×28,5×2,5м каждая. На плите установлено по четыре цилиндрические оболочки склада.

Фактические осадки оснований 60 фундаментов замерены в процессе строительства зданий и сооружений, по мере роста нагрузок. Вероятные осадки оснований определены по четырем известным методам: послойного суммирования (метод СНиП); К. Е. Егорова; Н. А. Цытовича и по формуле Шлейхера. Проведено сравнение замеренных и расчетных, а также замеренных и предельных осадок. Предельные осадки по СНиП оказались в в 5,3—18,9 раза больше фактических замеренных средних осадок.

В настоящее время считают, что указанные методы прогноза осадок достаточно достоверны. Коэффициенты достоверности методов расчета, т. е. отношение фактической осадки к расчетной, для метода послойного суммирования составляют около 1,5, т. е. вероятные (расчетные) осадки должны быть всегда выше фактических.

Результаты обработки наших замеров осадок оснований из пылеватых песков и сравнение их с расчетными осадками по четырем методам выявили среднее значение коэффициентов достоверности по всем рассмотренным методам mср = 0,71.

Таким образом, фактические осадки оснований составляют лишь 5—19% от предельных, определяемых по нормам, а по сравнению с расчетными составляют в среднем около 70%.

Незначительные по величине абсолютные и относительные осадки объектов завода объясняются влиянием больших площадей фундаментов и более высокими физико-механическими свойствами пылеватых песков по сравнению с принятыми при проектировании. Характеристики деформируемости грунтов оснований приведены в табл. 13.

Таблица 13. Замеренные и предельные осадки объектов.

1. Слабые грунты как основания зданий и сооружений

Слабыми принято называть молодые (в геологическом понимании) наносы различного состава и генезиса, которые не получили в естественных условиях достаточного уплотнения. Понятие слабый грунт в современной технической литературе трактуется довольно широко. По условиям образования и залегания эти грунты можно разбить на три группы: морские и озерные отложения образующие слоистые толщи (пески, супеси, суглинки, глины, органогенные и минеральные илы); покровные отложения, залегающие на плоских участках, на склонах и под склонами (торфяники, глинистый элювий коренных пород, размоченный лёсс, делювиальные отложения склонов, пролювий конусов выноса); техногенные отложения, залегающие в форме бугров, терриконов или во впадинах рельефа, в оврагах, карьерах в форме карманов (городская свалка, культурные слои старых городов, отвалы промышленных отходов, накопления хвостохранилищ и т.п.).

Слабые грунты особенно широко распространены в районах северо-запада СССР, в недавнем геологическом прошлом освободившихся от ледникового покрова последнего континентального оледенения, в условиях избыточного увлажнения и затрудненного стока подземных и поверхностных вод. Эти грунты образуют залежи на дне и по берегам морей и озер, в поймах и дельтах рек, на заболоченных водоразделах. Суммарная мощность толщ слабых грунтов сравнительно невелика, обычно не более 20—30 м; в ряде районов она достигает 50 м. Слабые грунты обычно водонасыщены, имеют весьма высокую влажность ( ω > ωL ),большую пористость и весьма большую сжимаемость; они чувствительны к воздействию вибрации и других факторов, связанных со строительным производством.

На территории многих городов северо-запада СССР, в частности Ленинграда, слабые грунты распространены почти повсеместно. Здания и сооружения, построенные в этих городах еще в дореволюционное время на ленточных фундаментах из бутового камня, а также на коротких деревянных сваях, получили осадки порядка десятков сантиметров. Развитие осадки продолжалось в течение многих лет после завершения строительства и обычно приводило к повреждениям кладки стен.

В условиях слабых грунтов современные крупнопанельные каркасные и кирпичные дома возводят на сваях, которые погружают в плотный подстилающий грунт. Длина таких свай обычно составляет 9—15 м, а под некоторыми зданиями — 32 м [28]. Однако и длинные сваи по ряду причин не гарантируют от возможного развития неравномерных осадок [32].

2. Устройство фундаментов в условиях существующей застройки на слабых глинистых грунтах

Слабые глинистые грунты — глины, суглинки, супеси, имеют высокую влажность ( ω > 0,5), большую пористость ( е > 1), модуль деформации примерно 1 — 10 МПа, низкую водопроницаемость [7]. При воздействии вибрации прочность этих грунтов понижается, т.е. проявляются тиксотропные свойства. Осадки зданий, возведенных на таких грунтах, развиваются в течение десятков лет и достигают больших величин. В районах северо-запада нашей страны распространены ленточные глины — поздние и послеледниковые отложения пресноводных бассейнов. Эти грунты имеют характерную (ленточную) текстуру; т.е. состоят из большого числа тонких слоев песчаного и глинистого материала, ритмично сменяющих друг друга, поэтому водопроницаемость грунта по вертикали (поперек слоистости) значительно меньше, чем по горизонтали. Распределение влажности в толще ленточных глин закономерно (рис. 6.1): в середине толщи влажность заметно больше, чем в периферийных частях, поэтому грунт на глубине 2—3 м и более заметно слабее залегающего у поверхности. Ленточные глины обладают большой пучинистостью при промораживании.

Читайте также:  Комель дерева для фундамента

Кроме того, эти глины особенно чувствительны к перемятию, т.е. резко изменяют свойства при различных технологических воздействиях. Поэтому, как рекомендовал в свое время Б.Д. Васильев, при разработке котлованов в этих грунтах требуется применять особые меры предосторожности (см. гл. 5). Разработка котлованов возле фундаментов на ленточных глинах весьма опасна.

Дополнительные осадки фундаментов на ленточных глинах могут быть учтены расчетом при проектировании. При этом, как показывает опыт, следует использовать результаты лабораторных испытаний, принимая значения коэффициента сжимаемости грунта в том диапазоне компрессионной кривой, который соответствует изменению напряженного состояния основания при возведении нового здания.

Ленточные глины в большой степени подвержены морозному пучению, поэтому при зимнем производстве работ в котлованах, вскрывающих ленточные глины, необходимо надежно утеплять существующие фундаменты. Для предотвращения выдавливания глины из-под подошвы фундаментов старых домов следует, как правило, применять технологический шпунт, погружаемый на 2—4 м ниже дна котлована.

Если строительный котлован разрабатывается ниже подошвы существующих фундаментов, применение ограждающего шпунта обязательно. Шпунт должен быть рассчитан не только по устойчивости, но и по деформациям. Для этой цели можно использовать методику, разработанную в ЛИСИ [8].

Сваи и шпунты легко проникают в ленточные глины, поэтому суммарное динамическое воздействие на основание бывает сравнительно невелико. Известны случаи, когда для проходки слоя ленточных глин толщиной 5 м требовалось всего 30—40 ударов механического молота [18]. Однако сваи и шпунты, ближайшие к существующему фундаменту, должны отстоять от него не менее чем на 2 м, а фронт свайных работ должен быть направлен в сторону существующих фундаментов [6].

При разработке проектов фундаментов при наличии ленточных глин необходимо иметь данные детальных изысканий, достоверно устанавливающих глубину заложения подошвы фундаментов существующих зданий по всей линии примыкания. Если в материалах изысканий эти данные отсутствуют, возможен выпор грунта. К примеру, в Ленинграде на ул. Куйбышева в 1978 г. при разработке котлована для устройства фундамента здания цеха возле заселенного трехэтажного дома в последнем образовались опасные деформации. Оказалось, что этот дом состоял из двух частей разновременной постройки: в одной части подошва фундаментов была заглублена на 0,5 м больше, чем под другой, где фундамент при изысканиях был вскрыт шурфом. В результате развился выпор грунта, жильцы были в срочном порядке выселены и здание разобрано, так как из-за полученных повреждений его капитальный ремонт оказался невозможен.

3. Устройство фундаментов вблизи зданий, возведенных на водонасыщенных рыхлых песках

Водонасыщенные рыхлые пески (аллювиальные, озерно-морские и другие) в условиях статического нагружения не получают больших деформаций, поэтому осадки зданий высотой, до 6—7 этажей на этих грунтах обычно не имеют опасного развития. Однако выполнение строительных работ в непосредственной близости от таких зданий может существенно изменить картину. Например, в районе Большой Охты в Ленинграде в 1979 г. при разработке котлована и забивке свай два здания, постройки 60-х годов получили сильные повреждения из-за неравномерной дополнительной осадки водонасыщенных песков (рис. 6.2).

Сваи, погружаемые вибрированием или забивкой (механическим молотом, дизель-молотом) в рыхлые водонасыщенные пески, должны располагаться на достаточном удалении от существующих фундаментов. Исследования, проведенные ВНИИГСом и ГПИ Фундаментпроект, показали, что безопасным является расстояние 20 м [11]. Большее приближение к существующему фундаменту требует проведения специальных виброметрических исследований при проведении инженерно-геологических изысканий и виброметрического контроля в период свайных работ.

На участке, приближенном к существующим фундаментам, уместно применение свай, погружаемых вдавливанием, а также винтовых и буронабивных свай. Разбуривание полостей для устройства буронабивных свай, даже под глинистым раствором, в рыхлых водонасыщенных песках около существующих фундаментов небезопасно. В этих условиях наиболее рационально применение стальных обсадных труб, оставляемых в скважинах, и подводное бетонирование без откачивания воды из полости. Такой метод был успешно использован в Ленинграде при устройстве фундаментов здания гостиницы «Москва» в непосредственной близости от ранее возведенной станции метрополитена (проект Ленинградского отделения ГПИ Фундаментпроект).

В водонасыщенных рыхлых песках применение глубинного водоотлива при наличии зданий возле котлована является нежелательной мерой, так как понижение уровня подземных вод на длительный период времени вызывает уплотнение грунта и развитие дополнительной осадки. В силу этих причин применение постоянных дренажных устройств на застроенных территориях, приводящие к понижению уровня подземных вод на несколько метров, недопустимо (см. гл. 1).

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Искусственное повышение несущей способности основания

§ 26. Общие положения

В практике строительства сооружений различного назначения иногда бывает экономически целесообразным не прорезать фундаментами значительную толщу слабых грунтов, а использовать последние в качестве оснований, предварительно укрепив их тем или иным способом с целью повышения несущей способности. Грунты укрепляют как для повышения их прочности, так и для уменьшения сжимаемости и просадочности.

Методы искусственного укрепления грунтов находят достаточно широкое применение в промышленно-гражданском строительстве. В мостостроении их применяют редко, преимущественно при усилении фундаментов существующих сооружений. Используемые в практике фундаментостроения многообразные способы искусственного повышения несущей способности грунтов можно свести к следующим основным методам: уплотнение грунтов; закрепление грунтов; замена слабых грунтов.

В настоящее время достаточно хорошо освоены и широко применяются механическое уплотнение, цементация и силикатизация грунтов, в меньшем объеме — обжиг и электрическое закрепление грунтов и пока редко — смолизация.

§ 27. Уплотнение грунтов

Уплотнение грунтов представляет собой механический процесс сближения частиц грунта, в результате которого уменьшается его пористость по сравнению с естественной и, как следствие этого, повышается его несущая способность. Различают способы поверхностного (на глубину до 2,5 м) и глубинного (на глубину 12 м и более) уплотнения грунтов. Поверхностное уплотнение производят укаткой, трамбованием или вибрацией. Для осуществления глубинного уплотнения используют воздействие вибрации, взрывов, применяют грунтовые и песчаные сваи, бумажные дрены и т. п.

Укатку и трамбование рекомендуется вести при влажности грунтов, близкой к оптимальной, т. е. при той, при которой достигается наибольший эффект уплотнения. Оптимальная влажность для песка мелкого и средней крупности составляет 10—15%; для песка пылеватого — 14—23%; для супесей — 9—15%; для суглинков принимается на 1%, а для глин на 2% ниже влажности на границе раскатывания. Увлажнение грунта с целью доведения его влажности до оптимальной осуществляют поливочной машиной или из шлангов.

Грунт укатывают тяжелыми катками различных конструкций, которые широко применяют в дорожном строительстве для уплотнения насыпей. За один проход катка грунт уплотняется на глубину до 20 см, а при многократном проходе — до 60 см. Методом укатки целесообразно уплотнять супеси, суглинки и глины на значительных по площади территориях.

Для уплотнения грунтовых оснований фундаментов сооружений разного назначения, включая мосты, катки не используют. В этих случаях более целесообразно применение трамбовок различных конструкций, в том числе свободно падающих, дизельных, пневматических и вибрационного действия.

Наиболее простыми и достаточно эффективными являются тяжелые трамбовки, сбрасываемые с высоты 3—4 м на уплотняемый грунт посредством кранов, оснащенных фрикционными лебедками. Такие трамбовки массой до 3,5 т делают из чугуна или железобетона в форме усеченного конуса с основанием диаметром 1—2 м.


Рис. 6.1. Изменение плотности сухого лессовидного грунта рd по глубине d; 1 — до уплотнения; 2 — после уплотнения трамбовкой диаметром 1,25 м; 3 — первоначальная поверхность грунта; 4 поверхность грунта после трамбования

Тяжелыми трамбовками можно хорошо уплотнять насыпные, рыхлые песчаные и сильно сжимаемые глинистые и лессовые грунты. При трамбовании грунт уплотняется на глубину до 2,5 м (рис. 5.1), что обеспечивает повышение несущей способности основания до 30%. Подвергнутый трамбованию лессовый грунт, как правило, теряет просадочные свойства в пределах зоны уплотнения и осадка его значительно уменьшается. Одной тяжелой трамбовкой в течение смены можно уплотнить 100— 150 м 2 площади основания. Существенным недостатком использования тяжелых трамбовок является быстрая изнашиваемость тросов, лебедок и кранов.

Более совершенным способом поверхностного уплотнения несвязных грунтов является вибрационный. В практике возведения сооружений применяют виброплощадки и виброкатки массой от 1,6 до 20 т. Вынуждающая сила вибраторов 100—220 кН при частоте колебаний 600— 3000 мин -1 . Подобными механизмами за 1ч можно уплотнять грунт на площади 50—300 м 2 на глубину 1—2 м.

Для глубинного уплотнения рыхлых песков, содержащих не более 20% пылеватых и глинистых частиц, наиболее эффективно использование гидровиброуплотнения.

В зависимости от гранулометрического состава пористость уплотняемого песка может быть снижена с 50 до 26%. При этом по мере уплотнения поверхность грунта понижается на 10—20% толщины слоя, что необходимо учитывать при назначении отметки верха уплотняемого массива.

Для глубинного уплотнения песчаных грунтов в пределах суши применяют гидровибратор в виде толстостенной стальной трубы диаметром 15—20 см, в нижней части которой установлен вибратор. В трубе сделаны отверстия для подачи напорной воды под давлением 0,3—0,6 МПа в уплотняемую зону грунта в процессе работы вибратора.

Читайте также:  Укладка лаг на фундамент пошаговая инструкция

В зависимости от конструкции вибраторы могут уплотнять грунт в радиусе до 2 м и на глубину до 12 м с производительностью от 200 до 600 м 3 грунта за 1 ч.

Сущность уплотнения основания грунтовыми сваями заключается в устройстве в его, пределах скважин, заполняемых грунтом с последующим уплотнением. Скважины устраивают путем вытеснения грунта природного сложения из объема, занимаемого каждой из них, что позволяет существенно уплотнить находящийся между ними грунт. Благодаря увеличению плотности грунтов в сваях и в междусвайном пространстве несущая способность оснований из связных грунтов повышается до 40%, а из несвязных — в 1,5—2 раза. При этом уменьшается их сжимаемость и снижается степень фильтрации воды. Этим способом можно уплотнять рыхлые пески, макропористые грунты, а также суглинки и илы, находящиеся в мягкопластичном состоянии.

Расстояния между сваями принимают исходя из требуемой степени уплотнения грунта, его физико-механических свойств, а также реальных возможностей применяемого технологического оборудования.

В связных грунтах, способных держать вертикальные стенки, скважины пробивают инвентарным сердечником или взрывным способом. Заполняют их уплотненным глинистым грунтом, а в макропористых грунтах — теми же грунтами, но укладываемыми с трамбованием и увлажнением.

Для уплотнения водонасыщенных рыхлых песчаных грунтов, мелких и пылеватых песков, в том числе с прослойками суглинков и глин, применяют песчаные сваи. Технология их изготовления аналогична технологии изготовления грунтовых свай.

Грунты и фундаменты. Типы грунтов, свойства грунтов. Песчаные грунты

Для выбора фундамента необходимо знать, что за грунты слагают основание участка, какая у них несущая способность и свойства – просадка, пучинистость, возможность плывуна под верхними слоями грунта. Все это и еще – все, что возможно, о грунтовой воде, ее высоте, агрессивности к бетону, напорная она или более выражена как фильтрационная, как меняется по сезонам. Для получения полной информации нужны исследование – геологические и гидрологические.

Механические свойства грунта верхнего слоя можно определить и своими руками, и хозяева участков отлично знают свои грунты. Способы определения свойств по морфологии образца грунта несложные.

Песчаные грунты, их состав и свойства

Пески – это мелкодисперсные грунты, состоящие главным образом из частиц размерами от 0,25 мм до 2 мм. Это наиболее часто встречающиеся пески на планете. Чтобы рассмотреть песчинки, микроскоп не нужен, и на первый взгляд, они все одинаковы. Но это не так, пески из различных мест и их свойства очень сильно отличаются. В пустынных песках, иногда на речном и морском берегу, песок состоит из окатанных, сглаженных и округлых частиц. Нередко встречаются практически идеальные «шары».

У подножий горных склонов песок будет совершенно другой – песчинки неокатанные, остроребристые, «колючие», с четкими очертаниями кристаллов. В песочке с пляжа вероятнее всего можно будет увидеть в микроскоп и слабоокатанные и кристаллические зерна.

Основной минерал в составе песков – кварц, материал исключительной твердости и прочности. Полевой шпат и слюда в составе песков имеет меньший процент. Состав песка обусловлен его образованием. Скальные грунты – граниты, гнейсы и др. выветриваются в результате многовековых колебаний температур, солнечной радиации, мороза, ветра, прорастания корней растений, воды и влаги и еще многих природных факторов.

Наиболее стойкий минерал – кварц, и в результате миллионов лет геологических процессов и выветривания кварц остается основным составом песков, но даже кварц разрушает всесильное время. Поверхность кварцевых песчинок покрывается слоем силикатов или глинистых минералов. При миграциях с дождями, ветрами, в реках и т.п, попадая на морское дно, песок за тысячи лет превращается в песчаник, затем опять выветривается, и процессы эти бесконечны.

К чему все эти сказки? Да просто к тому, что недостаточно определить свой грунт на своем участке – это песок. У песков очень большой диапазон свойств! И поведут себя пески различной крупности и рыхлости под фундаментами и в дренажных подушках очень по-разному.

Песок имеет особые свойства, невозможные для других грунтов. Форма и размеры песчинок при отсыпке слоев обуславливает их рыхлую, «воздушную» укладку. Плотным слой песка станет только если применить вибрационное воздействие и уплотнить его механически. Песчинки укладываются компактно, слой становится значительно тоньше – может «сесть» на четверть высоты и более и приобретает несущие качества.

Также можно уплотнить песок, пропуская через него воду. Песчинки мгновенно перераспределяются, «переориентируются» в водной массе и образуют плотный массив. Они упаковываются компактно и плотно, в результате активная пористость песка снижается. Это явление известно всем, кто ходил по пляжу, иногда по песочку возле прибоя можно бегать, как по асфальту.

Прием уплотнения песков способом пропускания через него воды в строительстве применяется редко. В некоторых случаях нормы прямо запрещают уплотнение проливкой, одна из причин – большое количество воды размывает нижележащие грунты, может нарушить их структуру на участке под будущей конструкцией, и в результате снизить их несущую способность. Еще у песка есть «неприятное» свойство, хорошо знакомое строителям, да и дачникам тоже – песок способен с водой просачиваться сквозь слои даже плотных глин и при этом утягивать часть глины с собой. Особенно этим отличаются речные пески. В конструкциях пирогов отсыпок, отмосток и пр. эти свойства песка и глин обязательно учитывают.

Слагать основание участка могут как плотные, так и рыхлые пески, и разница для выбора фундамента огромная. Зачастую для усиления оснований приходится применять меры – уплотнение не только механическое, но и различные виды цементаций, силикатизаций и многие другие. Притчи и выражения вида «построить домик на песке» относятся именно к рыхлым сухим песчаным грунтам. Строить на этих грунтах – рискованно.

Песчаные грунты разнообразны по составу, их свойства зависят от условий образования, климатических условий местности и от минералогического состава, от вида горных пород, которые в составе песка. Пески делят на следующие виды – гравелистый, крупный, средней крупности и мелкий, причем в одном отложении песок может быть всех видов сразу. Минералы, входящие в состав песка — до 70% кварца, до 8% полевых шпатов, до 3% кальцита, соли и железо. Чаще всего встречаются песок кварцевый и кварцево-полевошпатовый.

Классифицируют пески по ГОСТу, исходя из размера зерен и процента содержания частиц разного размера в массе пробы, то есть по гранулометрическому составу:

  • Пески гравелистые. По содержанию – более 25% частиц размером более 2мм
  • Пески крупные. По содержанию – более 50% частиц размером более 0,5 мм
  • Пески средней крупности, или средние. По содержанию – более 50% частиц размером более 0,25 мм
  • Пески мелкие. По содержанию – более и равное 75 % по массе число частиц размером более 0,1 мм
  • Пески пылеватые. По содержанию – до 75% частиц более 0,1 мм

По плотности и несущей способности песчаные грунты подразделяют на пески плотной и средней плотности. Плотные пески, как правило, расположены глубже 1,5 м, и спрессовались под давлением от расположенных выше слоев грунта. Такие пески являются хорошим основанием для фундаментов.

Пески средней плотности – те, что находятся на глубине до 1,5 или отсыпаны и уплотнялись искусственно. Эти пески имеют несущую способность похуже, и подвержены значительной осадке под фундаментом.

Понятна взаимосвязь между плотностью и несущей способностью песчаных грунтов. Для гравелистых песков средней плотности предел нагрузки до 5 кгс/см2, у плотных – больше 6 кгс/см2. Средние пески плотные имеют предел несущей способности до 4-5 кгс/см2, среднеплотные – до 3-4 кгс/см2. Мелкие пылеватые пески в плотном состоянии максимально несут нагрузку в 3кгс/см2, при средней плотности – до 2кгс/см2. Водонасыщенные пески резко снижают свою несущую способность до 2 кгс/см2.

Эта особенность песчаных грунтов связана с их способностью резко терять прочность и переходить в «текучее» состояние при насыщении водой и вибрациях. На крайнем полюсе этого явления – зыбучие пески. Разжижение водонасыщенных песков связано с процессами разрушения их структуры при заводнении, а затем новом уплотнении и уменьшении прочности. Причем в текучее состояние переходят не только пески пылеватые, имеющие в составе тонкие глинистые частицы и коллоидные примеси, увеличивающие тиксотропию (разжижение при механическом воздействии). Неожиданно потерять прочность могут и слои чистых крупных песков.

Характеристики прочности связаны с другой характеристикой песка – пористостью. Пористость – это отношение воздушных пор в объеме грунта к его общему объему, и измеряется в процентах. У гранита и базальта пористость составляет десятые доли процента, у глин – до 80%. У песков пористость меньше, чем у глин – 30-38%, у крупных гравелистых песков до 50%, но пески в отличие от глин отлично пропускают воду, являются дренирующими грунтами. А глины, имея пористость от 35 до 80%, практически водонепроницаемые. Объяснение – в структуре грунтов. У песка поры крупные, до 0,01 мм, так как частицы песка имеют размеры от 0,1 до 2,5 мм, а глинистые грунты содержат тонкие частицы от 0,0001 до 0,005 мм и менее, и поэтому имеют тонкопористую структуру, где вода начинает испытывать силы капиллярного притяжения. Тонкие поры глин воду не пропускают и делают слой уплотненной глины отличным водоупором, несмотря на высокий процент пористости. Пески, особенно гравелистые, фильтруют воду с большой скоростью, это отлично видно при дожде, когда участок сложен крупными песками. Луж не будет даже после ливня.

Читайте также:  Фундамент для беседки из пеноблоков

Другое дело – если грунт сжать. Крупные поры песков разрушатся очень быстро, а тонкие поры глин могут сохраняться долгое время при нагружении грунта. Поры размером более 0,01 мм называют активными, а структуры грунтов оценивают еще одной важной характеристикой – активной пористостью.

На прочность слоя песчаного грунта в основании участка их пористость влияет в огромной степени, причем абсолютно по-разному на крупные и мелкие пылеватые пески. Вода уходит через поры крупных песков, а нагрузки воспринимает скелет грунта. Поэтому песок с низкой пористостью влагу держит плохо, и практически не подвержен морозному пучению. Чем меньше влажность песка и выше его плотность, тем больше несущая способность данного основания.

Самый лучший вид песчаного грунта для устройства фундамента – крупные и гравелистые пески. Фундамент можно выбирать практически любого типа, в зависимости от веса, архитектурного плана здания и нагрузок. Эти пески практически не насыщаются водой, а фильтруют ее без изменений своей структуры, и вода не может влиять на их плотность. Хороший дренаж – как следствие малая степень пучинистости, и в итоге — не будет подвижек грунта. Вследствие этого крупные и гравелистые пески отличаются наибольшей несущей способностью.

Мелкий и пылеватый песок отличаются тем, что воду не фильтруют, а впитывают и удерживают. Образуется, простыми словами, грязь, которая при замерзании значительно увеличивается в объеме, и происходит процесс под названием морозное пучение, способный вытолкнуть дом из земли, повредить дорожное покрытие и т. далее. Пылеватые пески – основание, склонное к сильному пучению, и этот фактор ограничивает выбор видов фундамента и требует расчета глубины заложения.

Фундаменты на гравелистых, крупных и средних песках можно устраивать ленточные или ленточно-столбчатые, заглубляя подошву на 30-70 см. Эти пески под действием нагрузок быстро уплотняются, мало промерзают, их поведение в основаниях довольно стабильно. В отличие от крупных, пылеватые мелкие пески зачастую испытывают просадку под фундаментами многие годы, отличаются невысокой прочностью и «держат», а не фильтруют воду. Если УГВ высокий, то фундамент на пылеватых песках следует закладывать ниже глубины промерзания грунта.

При необходимости строительства на мелких пылеватых песках необходимо особое внимание уделять связи их свойств с возможным высоким уровнем грунтовых вод. Одна из особенностей пылеватых песков с примесями глины – образовывать плывуны при насыщении водой. Если в основании участка мелкие и пылеватые пески, и близко есть (или был) водоем, болото или заболоченное место, исследование геологии участка – практичное решение.

Несущая способность грунтов в основании фундаментов частного дома

Как правило, слабым звеном в основании дома является грунт, на который опирается фундамент. Конструкция и размеры фундамента зависят прежде всего от свойств грунта, залегающего под фундаментом.

При взаимодействии фундамента с грунтом решаются две основные задачи:

  • Передача и распределение давления от веса здания на грунт должны быть выполнены так, чтобы нагрузка на грунт не превышала допустимую для грунта величину. Площадь опирания фундамента на грунт должна определенным образом соответствовать несущей способности грунта.
  • Необходимо обеспечить снижение воздействия на здание сил морозного пучения грунта до допустимого уровня.

Несущая способность грунта

При выборе конструкции фундамента производится проверка соответствия несущей способности грунта конструкции фундамента. Предельно-допустимое сопротивление грунта основания должно быть выше нагрузки на него от веса здания.

На способность грунтов «держать» фундамент оказывают влияние целый ряд факторов, но основными являются следующие:

  • Тип и состав грунта;
  • Его плотность и пористость;
  • Сезонная влажность грунта основания;
  • Уровень подземных вод;

Какие бывают грунты в основании фундамента?

Грунты делятся на песчаные и глинистые.

В свою очередь, песчаные грунты по зерновому (гранулометрическому) составу подразделяются на гравелистые, крупные, средней крупности, мелкие и пылеватые. Песок сыпучий, так как имеет малое сцепление между частицами. Несущая способность песка в основном обусловлена наличием трения между частицами. Несущая способность песчаного грунта увеличивается с ростом крупности песка и плотности песчаного грунта. По этому показателю выделяются три группы песка: плотные, средней плотности и рыхлые.

Среди глинистых грунтов существуют разновидности: собственно глины, суглинки и супеси. В указанной последовательности, в составе грунтов уменьшается содержание глинистых, пылеватых частиц и увеличивается количество песчаных частиц.

Глинистые грунты характеризуются числом пластичности — Jp>0,01.

Прочность глинистых грунтов обусловлена в основном наличием сил сцепления между частицами таких грунтов. Чем больше глинистых частиц в грунте и плотность грунта, тем больше силы сцепления и несущая способность грунта. Но, в глинистых грунтах силы сцепления между частицами уменьшаются с увеличением влажности грунта. Его влажностное состояние обуславливает консистенцию грунта. При прочих равных условиях с ростом консистенции (влажности) прочность грунтов убывает.

По консистенции глины и суглинки подразделяются на твердые, полутвердые, тугопластичные, мягкопластичные, текучепластичные и текучие.

Супеси подразделяются на твердые, пластичные и текучие.

Для определения несущей способности грунта проводят лабораторные испытания образцов, отобранных на площадке строительства, и определяют физические характеристики грунта — вид и гранулометрический состав грунта, плотность, коэффициенты пористости, показатели текучести и пластичности.

Влияние влажности грунтов на их несущие свойства

Очень большую роль играет содержание воды в грунте. Способность грунтов удерживать влагу зависит от типа и разновидности грунта, его плотности или пористости. Влажность грунта меняется по сезонам в течение года.

Некоторые типы грунтов в условиях повышенной влажности становятся очень сложным вариантом в качестве основания. Например, пылеватые пески и супеси, могут содержать в большом количестве очень мелкие глинистые частицы. Вследствие наличия этих мелких частиц такие грунты активно вбирают и слабо отдают воду. Насыщенные водой, эти мелкие частицы начинают играть роль смазывающего вещества между крупными частицами грунта. Уже при небольшом движении жидкости в пласте они переходят в плывунное состояние и легко перемещаются с водой. Фундамент может начать «тонуть» в таком грунте или «уплывать» — смещаться в сторону.

Любой грунт при увлажнении проседает и уплотняется.

В процессе своего существования грунт, расположенный ниже глубины промерзания, уплотняется до состояния «дальше некуда». Ничто не меняет это состояние в течение многих и многих десятков и сотен лет.

В то же время грунт, находящийся выше глубины промерзания, постоянно насыщается влагой и при сезонном промораживании увеличивается в объеме. Влага, находящаяся в порах, увеличивает объем этих пор на 10%.

Таким образом, скелет грунта, находящегося выше границы промерзания, ежегодно «встряхивается», становясь более пористым.

Например, глинистый грунт, находящийся ниже глубины промерзания, обладает минимальной пористостью и максимальной прочностью, а вот тот же грунт, находящийся выше точки промерзания, который и служит основанием для мелкозаглубленных фундаментов, обладает крайне высокой пористостью.

С высокой долей вероятности, супеси и глинистые грунты для мелкозаглублённого фундамента можно считать рыхлыми.

Надо ли проводить испытания грунта в основании фундамента?

Часто спрашивают: «Зачем проводить испытания грунта? Достаточно запроектировать фундамент для грунта с наихудшей несущей способностью».

Действительно, многие проектные организации предлагают готовые проекты домов с плитным фундаментом, рассчитанным на наихудшие грунтовые условия строительства. Но, из опыта проектирования и строительства известно, что чем большая информация имеется по грунтовым условиям застраиваемой площадки, тем меньшие затраты требуются на устройство фундаментов.

Выгоднее произвести незначительные затраты на испытания грунтов, отобранных застройщиком из шурфов, и подобрать фундамент по конкретным данным, чем без всяких обоснований использовать мощный, но дорогой, фундамент.

Особенно ощутима эта выгода при строительстве двух- и трёхэтажных зданий со стенами из кирпича и бетона с железобетонными перекрытиями.

Для более легких зданий можно выбрать фундамент, основываясь на ориентировочных данных о грунте, собранных самим застройщиком.

Улучшение грунта в основании фундамента

При проектировании фундамента обязательно следует рассмотреть возможность улучшения пригодности грунта для опирания на него фундамента. Часто бывает выгодно укрепить грунт, что позволит сделать простой и надежный фундамент.

При слабых и пучинистых грунтах имеет смысл сосредоточиться прежде всего на улучшении характеристик грунта основания, а уже потом на расчёте толщины-ширины ленты фундамента и её армировании.

Вот краткий перечень мероприятий, которыми можно добиться улучшения характеристик грунта основания.

На слабых грунтах:

  • Устройство подушек из крупных песков и щебня. Иногда имеет смысл полностью заменить в пределах основания слабый слой насыпным непучинистым грунтом с лучшими характеристиками.
  • Уплотнение грунта (трамбовка) при необходимости.

Устраиваемые под фундаментами песчаные подушки выполняют три функции:

1. Повышают несущую способность основания, что позволяет уменьшить ширину фундамента и, как следствие расход бетона на его устройство;

2. Заменяют часть пучинистого грунта на непучинистый, что приводит к уменьшению деформаций пучения основания;

3. Уменьшают переувлажнение грунта при его оттаивании в весенний период, которое оказывает большое влияние на осадки фундаментов;

Толщина подушки должна обеспечивать необходимую несущую способность подстилающего ее слабого грунта, а также ограничить абсолютные и относительные деформации пучения до допустимых пределов, регламентированных нормами.

О влиянии морозного пучения грунтов на фундамент читайте в статье:

Ссылка на основную публикацию
Adblock
detector